суббота, 25 февраля 2017 г.

На квантовом уровне будущее управляет прошлым

Стараюсь максимально просто объяснить чтобы и самому понять.

В опыте Томаса Юнга 1803 года фотоны света пролетали через одну или две щели в преграде и оставляли след на экране. При пролете через одну щель фотоны оставляют одну полоску на экране напротив щели. А, при пролете через две щели фотоны проявляют себя как волна, потому что на экране возникает так называемая "интерференционная картина", которая может возникать при наложения двух волн одинаковой частоты, исходящих из 2-х точек (или щелей). Она представляет собой чередование ярких и светлых полос.


Яркие полосы там где гребни волн налагаются друг на друга, а темные - где верхний гребень одной волны налагается на нижний гребень другой (противофаза).

Тогда ученые поняли впервые, что фотон - волна. Давно это было. Позже тоже самое выяснилось и о электроне и многих других частицах.

Чтобы в этом точно убедиться, этот опыт, по мере развития техники, усовершенствовали до такой степени, что смогли стрелять не пучком электронов, а отдельными электронами. И оказалось, что каждый отдельный электрон создавал на экране интерференционную картину, как будто, он - волна.

Все бы было так просто, если бы кому-то не пришло в голову понаблюдать, через какую из 2 щелей пролетел каждый электрон. И под наблюдением, к изумлению ученых, на экране появились две полоски (то есть, электроны вели себя как частицы - каждый раз пролетали только через одну щель).

Что значит "наблюдать"? Это значит, возле каждой щели ставился специальный датчик, который подавал сигнал, если именно через его щель пролетала частица.

Получается 2 возможных варианта объяснения:
1. "Мистический": Поведение электрона зависит от того, ведется ли за ним наблюдение или нет. 
2. "Естественный": на электрон влияет то техническое устройство ("датчик"), которое фиксирует, через какую щель пролетает частица.
К еще большему удивлению ученых выяснилось, что результат одинаков для разных видов датчиков, точнее, для разных технологий наблюдения и для разных частиц. То есть, любое наблюдение одинаково влияет на поведение. Независимость от способа наблюдения усиливала подозрение в пользу мистического варианта объяснения как будто важен сам факт наблюдения, а не влияние прибора.

Чтобы разобраться с этим, решили усложнить опыт так, чтобы полностью исключить влияние датчика. Каким образом? Поставили эксперимент так, чтобы датчик пролета частицы через щель срабатывал ПОСЛЕ того, как частица уже проявила себя либо как частица, либо как волна, оставив соответствующий след на экране.

И вот именно тут произошло подтверждение мистического объяснения. Оказалось, будущие действия влияли на прошлые события. Если показания с датчика считывались после прилета частицы на экран, то оказывалось, что частица не вела себя как волна. А если не считывались - то на экране оставался след от волны.

Этот вариант эксперимента называется "Эксперимент с отложенным выбором". Потому что вы на будущее переносите решение считывать ли информацию о том, через какую щель летела частица, или не считывать.

Вот об этом из Википедии https://goo.gl/iJrYUv :
Основной результат эксперимента заключается в том, что не имеет значения, был процесс стирания выполнен до или после того, как фотоны достигли экрана детектора (и заявили о себе либо как частица либо как волна)
В пользу того, что на результат влияет сам факт наблюдения, а не наличие физического датчика, говорит то, что самые выдающиеся нобелевские физики 20 века Эйнштейн, Бор и другие много обсуждали это явление. Если бы всё упиралось в обычное физическое влияние детектора, никто бы не удивился, и говорить было бы не о чем. Напротив, ученые повыдвигали много сложных теорий по объяснению феномена. Точнее, по законам микромира на основании открытого феномена, при котором будущее наблюдение как-то влияет на прошлое событие. В частности, Эйнштейн так выразился:
«Вы действительно верите в то, что Луны нет на небе, пока мы не взглянем на неё?»
***

А теперь подробнее. Как технически проводится эксперимент?